High Performance Computing for Solving Fractional Differential Equations with Applications

نویسنده

  • Wei Zhang
چکیده

Fractional calculus is the generalization of integer-order calculus to rational order. This subject has at least three hundred years of history. However, it was traditionally regarded as a pure mathematical field and lacked real world applications for a very long time. In recent decades, fractional calculus has re-attracted the attention of scientists and engineers. For example, many researchers have found that fractional calculus is a useful tool for describing hereditary materials and processes. It has been used to model the properties of viscoelastic materials and anomalous diffusion. Other applications of fractional calculus include signal processing, control of dynamic system, fractal theory, finance. In this thesis, we have investigated several applications of fractional calculus and the use of multi-core hardware architecture for solving fractional differential equations. Within heat theory, we have studied fractional generalized Cattaneo equations and pointed out that the fractional heat equations may give negative absolute temperatures. Related to elastography, we have investigated the use of a fractional wave equation to describe the shear propagation induced by radiation force. We have concluded that there is a possibility of biased estimation of shear modulus. Numerical simulation of fractional partial differential equations is a time-consuming task due to the non-local property of fractional derivatives. We have shown that optimization techniques and parallel computing can reduce the long simulation time. We have also developed performance models which can give deep understanding of the optimization techniques and predict the simulation time of both serial and parallel implementations. Last but not least, we have demonstrated that parallel solvers of three-dimensional time-fractional diffusion problems are well suited for cutting-edge parallel hardware.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fractional-order Legendre wavelets and their applications for solving fractional-order differential equations with initial/boundary conditions

In this manuscript a new method is introduced for solving fractional differential equations. The fractional derivative is described in the Caputo sense. The main idea is to use fractional-order Legendre wavelets and operational matrix of fractional-order integration. First the fractional-order Legendre wavelets (FLWs) are presented. Then a family of piecewise functions is proposed, based on whi...

متن کامل

Solving the fractional integro-differential equations using fractional order Jacobi polynomials

In this paper, we are intend to present a numerical algorithm for computing approximate solution of linear and nonlinear Fredholm, Volterra and Fredholm-Volterra  integro-differential equations. The approximated solution is written in terms of fractional Jacobi polynomials. In this way, firstly we define Riemann-Liouville fractional operational matrix of fractional order Jacobi polynomials, the...

متن کامل

A spectral method based on Hahn polynomials for solving weakly singular fractional order integro-differential equations

In this paper, we consider the discrete Hahn polynomials and investigate their application for numerical solutions of the fractional order integro-differential equations with weakly singular kernel .This paper presented the operational matrix of the fractional integration of Hahn polynomials for the first time. The main advantage of approximating a continuous function by Hahn polynomials is tha...

متن کامل

A Numerical Method for Solving Fuzzy Differential Equations With Fractional Order

In this paper we present a numerical method for fuzzy differential equation of fractional order under gH-fractional Caputo differentiability. The main idea of this method is to approximate the solution of fuzzy fractional differential equation (FFDE) by an implicit method as corrector and explicit method as predictor. This method is tested on numerical examples.

متن کامل

Fractional type of flatlet oblique multiwavelet for solving fractional differential and integro-differential equations

The construction of fractional type of flatlet biorthogonal multiwavelet system is investigated in this paper. We apply this system as basis functions to solve the fractional differential and integro-differential equations. Biorthogonality and high vanishing moments of this system are two major properties which lead to the good approximation for the solutions of the given problems. Some test pr...

متن کامل

Comparative study on solving fractional differential equations via shifted Jacobi collocation method

In this paper, operational matrices of Riemann-Liouville fractional integration and Caputo fractional differentiation for shifted Jacobi polynomials are considered. Using the given initial conditions, we transform the fractional differential equation (FDE) into a modified fractional differential equation with zero initial conditions. Next, all the existing functions in modified differential equ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014